One reason for graph theory’s power as a modeling tool is the fluidity with which one can use it to formalize the properties of large systems using the language of graphs, and then to systematically explore their consequences. In this first set of questions, we work through an example of this process using the concept of a pivotal node.
Recall from earlier in the chapter that a shortest path between two nodes is a path of the minimum possible length. We say that a node X is pivotal for a pair of distinct nodes Y and Z if X lies on every shortest path between Y and Z (and X is not equal to either Y or Z).
For example, in the graph in Figure 2.13, node B is pivotal for two pairs: the pair consisting of A and C, and the pair consisting of A and D. [Notice that B is not pivotal for the pair consisting of D and E because two different shortest paths connect D and E, one of which (using C and F) does not pass through B. Therefore, B is not on every shortest path between D and E.] As another example, note that node D is not pivotal for any pairs.
(a) Give an example of a graph in which every node is pivotal for at least one pair of nodes. Explain your answer.
(b) Give an example of a graph in which every node is pivotal for at least two different pairs of nodes. Explain your answer.
(c) Give an example of a graph having at least four nodes in which there exists a single node X that is pivotal for every pair of nodes (not counting pairs that include X). Explain your answer.
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more