The temperature T at the wall of a furnace varies periodically over the day as T t( ) = + 125 50 sin (t − ) 2 24 6 π where t is the time in hours measured from midnight and T is in °C. The ambient temperature Ta is 25°C, and the surface area A of the wall is 10 m2. If the heat transfer coefficient h is given as 20 W/m2°C, the heat transfer from the wall is given by ∫[ ( T t) ] − T hA t a d . Using the trapezoidal rule, compute this integral as accurately as possible for the time interval t = 6 to t = 12. Also evaluate the integral analytically and compare the result with the computed value. Use the quad function in MATLAB to verify the results obtained.
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more